Paste your CSV/Excel URL in the dynamic fields panel
(Use the mock data URL from template details for quick testing)
About Dynamic Fields
These runtime parameters in the Manual Trigger act like environment variables - set them before execution to customize each automation run.
Click “Run Now”
Step 2: Python Data Processing
def main():
url = "{URL_FROM_TRIGGER}" # Dynamic field injection
df = pandas.read_csv(url, encoding='utf-8')
# Convert to ISO 8601 UTC datetime
df["sale_date"] = pandas.to_datetime(df["sale_date"]) \
.dt.tz_localize("Asia/Shanghai") \
.dt.tz_convert("UTC") \
.dt.strftime("%Y-%m-%dT%H:%M:%SZ") # Bika-compliant format
# Enforce integer type for quantity
df["quantity_sold"] = pandas.to_numeric(
df["quantity_sold"],
errors="coerce"
).fillna(0).astype(int)
return df.to_dict('records')
try:
result = main()
except Exception as e:
error_msg = f"CSV processing failed: {type(e).__name__}: {e}"
Key Implementation Details
Dynamic Field Binding: The url variable uses double-quoted "{URL_FROM_TRIGGER}" syntax to inject parameters from the Manual Trigger. Use / to open variable picker.